Impact of weight percent gadolinium and the number of its fuel rods on the neutronic and safety parameters

Document Type

Article

Publication Date

11-1-2021

Abstract

Control of neutron multiplication in a nuclear reactor is fundamental in achieving stable reactor power. The present study has sought to determine the impact of gadolinium weight percent (w/o) in respect of the number of fuel rods on the neutronic and safety parameters of (Th, U)O-2 fuel in a Westinghouse small modular reactor. The MCNPX 2.7 integrated with CINDER90 fuel depletion code was used. The results show that the k-infinite and reactivity swing peak decrease with increasing gadolinium weight percent, with the highest and lowest k-infinite recorded in the fuel assembly containing zero (0) and 12 w/o, respectively. The largest and lowest reactivity swing curve occurs in the fuel assembly with 3.6 and 12 w/o at similar to 15 and similar to 35 GWd/THM, respectively. It shows that the impact of gadolinium w/o and the number of fuel rods on k-infinite follow similar trend. Conversely, the reactivity swing curve is observed to flatten with increasing gadolinium w/o but increases with increase in the number of gadolinium burnable absorber fuel rods. These phenomenological variations suggest that flat reactivity swing and power control can be achieved within 9.2-12 w/o gadolinium although not without economic penalty on fuel utilisation.

Keywords

Gadolinium, Neutronic, Reactivity, Safety parameters, Small modular reactor, Thorium

Divisions

Science

Funders

University of Malaya, Malaysia through the RU Grant - Faculty Programme

Publication Title

Radiation Physics and Chemistry

Volume

188

Publisher

Elsevier

Publisher Location

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

This document is currently not available here.

Share

COinS