A first-principles study of two-dimensional NbSe2H/g-ZnO van der Waals heterostructures as a water splitting photocatalyst

Document Type

Article

Publication Date

10-1-2021

Abstract

Based on first-principles calculations, we propose a new two-dimensional (2D) van der Waals (vdW) heterostructure that can be used as a photocatalyst for water splitting. The heterostructure consists of vertically stacked 2D NbSe2H and graphene-like ZnO (g-ZnO). Depending on the stacking orders, we identified two configurations that have high binding energies with an energy band gap of >2.6 eV. These 2D systems form a type-II heterostructure which enables the separation of photoexcited electrons and holes. The presence of a strong electrostatic potential difference across the 2D NbSe2H and g-ZnO interface is expected to suppress the electron-hole recombination leading to an enhancement in the efficiency of the photocatalytic activity. Our study also shows that the 2D NbSe2H/g-ZnO vdW heterostructure has good thermodynamic properties for water splitting. Furthermore, the optical absorption of the 2D NbSe2H/g-ZnO vdW heterostructure extends into the visible light region. Our results suggest that the 2D NbSe2H/g-ZnO vdW heterostructure is a promising photocatalytic material for water splitting.

Keywords

Photocatalyst, Water splitting, Photocatalytic material

Divisions

Science

Funders

Ministry of Higher Education & Scientific Research (MHESR) FP044-2021,Ministry of Higher Education (MoHE) (FRGS/1/2021/STG07/UM/02/1)

Publication Title

Physical Chemistry Chemical Physics

Volume

23

Issue

42

Publisher

Royal Society of Chemistry

Publisher Location

THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND

This document is currently not available here.

Share

COinS