An adaptive multi-level quantization-based reinforcement learning model for enhancing UAV landing on moving targets
Document Type
Article
Publication Date
7-1-2022
Abstract
The autonomous landing of an unmanned aerial vehicle (UAV) on a moving platform is an essential functionality in various UAV-based applications. It can be added to a teleoperation UAV system or part of an autonomous UAV control system. Various robust and predictive control systems based on the traditional control theory are used for operating a UAV. Recently, some attempts were made to land a UAV on a moving target using reinforcement learning (RL). Vision is used as a typical way of sensing and detecting the moving target. Mainly, the related works have deployed a deep-neural network (DNN) for RL, which takes the image as input and provides the optimal navigation action as output. However, the delay of the multi-layer topology of the deep neural network affects the real-time aspect of such control. This paper proposes an adaptive multi-level quantization-based reinforcement learning (AMLQ) model. The AMLQ model quantizes the continuous actions and states to directly incorporate simple Q-learning to resolve the delay issue. This solution makes the training faster and enables simple knowledge representation without needing the DNN. For evaluation, the AMLQ model was compared with state-of-art approaches and was found to be superior in terms of root mean square error (RMSE), which was 8.7052 compared with the proportional-integral-derivative (PID) controller, which achieved an RMSE of 10.0592.
Keywords
Unmanned aerial vehicle (UAV), Autonomous landing, Deep-neural network, Reinforcement learning, Multi-level quantization, Q-learning
Divisions
sch_ecs
Funders
Zayed University cluster award (Grant No: R19046),Ministry of Higher Education (MoHE) through the Fundamental Research Grant Scheme (Grant No: FRGS/1/2021/ICT01/UTHM/02/1 & K389),Universiti Tun Hussein Onn Malaysia,UTHM Publisher's Office via Publication Fund (Grant No: E15216)
Publication Title
Sustainability
Volume
14
Issue
14
Publisher
MDPI
Publisher Location
ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND