Date of Award
2-1-2022
Thesis Type
phd
Document Type
Thesis (Restricted Access)
Divisions
eng
Department
Department of Civil Engineering
Institution
Universiti Malaya
Abstract
Water contamination from dyes and antibiotics has been a growing cause of environmental concern. Versatile adsorbents that can remove various contaminants simultaneously rather than just one type of contaminant would be beneficial in developing practical strategies to remove contaminants. Sugarcane bagasse (SB) has the potential to be a versatile, low-cost adsorbent due to its high cellulose, hemicellulose, and lignin content. Hydrothermal carbonization (HTC) is a moderate-temperature alternative to pyrolysis, producing green and cost-effective SB-based adsorbent (hydrochar). Despite this, hydrochar recognize for having poor porosity, which reduces its adsorption efficiency. The activation/modification of SB hydrochar may mitigate its drawbacks. However, difficulties in recovering powdered SB-based adsorbent from the solution during the post-adsorption process may prevent wide application. Hence, the ultimate encapsulated SB-based adsorbent was developed through four levels of sequence development ((1) SB hydrochar (HC), (2) activated HC (AHC), (3) modified AHC by NiFe bimetal organic framework (NiFeMOF) (NiFeMOF@AHCop), and the (4) double crosslinking of encapsulated NiFeMOF@AHCop in alginate bead aerogel (NiFeAHC/SA bead aerogel)) were examined. Response Surface Methodology-Central Composite Design (RSM-CCD) was employed to optimize the preparation parameters of HCop, AHCop, NiFeopAHC, and NiFeCop bead aerogel in achieving maximum dye and antibiotic removal, with Crystal Violet (CV) dye and Tetracycline (TC) as model contaminants. Characterization analyses including Field Emission Scanning Electron Microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer
Note
Thesis (PhD) - Faculty of Engineering, Universiti Malaya, 2022.
Recommended Citation
Farahin, Mohd Jais, "Development of sugarcane bagasse-based adsorbents for dye and antibiotic removal from contaminated water / Farahin Mohd Jais" (2022). Student Works (2020-2029). 1094.
https://knova.um.edu.my/student_works_2020s/1094