Date of Award

1-1-2017

Thesis Type

phd

Document Type

Thesis

Divisions

science

Department

Faculty of Science

Institution

University of Malaya

Abstract

The rhizomes of the plants of Zingiberaceae family are rich sources of bioactive phytochemicals and therefore, are major targets for discovering new phytomedicines. Three of these phytochemicals, namely, flavokawain B (FB), pinostrobin (PS) and 6-shogaol (6S) have shown various therapeutic properties including antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial activities. The interactions of these compounds with the main in vivo drug carrier, human serum albumin (HSA) were investigated using a multitude of spectroscopic methods, supported by molecular docking studies. Significant quenching of HSA fluorescence intensity was observed upon titration of the protein with these compounds. Analysis of the fluorescence data revealed the involvement of static quenching phenomena in these interactions, thus suggesting the formation of ligand–HSA complexes. The association constants, Ka of these ligand–HSA systems were found to lie in the range, 0.63–1.03 × 105 M−1 at 25 °C, characteristic of moderate affinity binding. Thermodynamic analysis of the binding data showed that the binding reactions were accompanied by negative enthalpy (−ΔH) and positive entropy (+ΔS) changes, which were indicative of the involvement of hydrophobic and van der Waals forces along with hydrogen bonds in the complex formation. This was corroborated by molecular docking results depicting the formation of hydrogen bonds and identification of hydrophobic residues in the vicinity of the docked ligands. Synchronous and three-dimensional fluorescence data suggested significant change in the microenvironment around Tyr and Trp residues of HSA upon binding to these compounds. Far-UV circular dichroism results indicated relatively higher thermal stability of the protein in the presence of these ligands. Competitive drug displacement experiments along with docking simulation results suggested a clear binding preference of FB and PS for Sudlow’s site I (subdomain IIA) of HSA, while 6S was able to bind favourably to Sudlow’s site I as well as with Sudlow’s site II (subdomain IIIA).

Note

Thesis (PhD) – Faculty of Science, University of Malaya, 2017.

Share

COinS