Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment
Document Type
Article
Publication Date
2-15-2022
Abstract
In-situ bioremediation of mangrove soil contaminated with polyethylene terephthalate (PET) and polystyrene (PS) microplastics was investigated using indigenous microbial consortium with adequate capacity to degrade the plastics. Eight (8) bacteria were isolated from plastic/microplastic-inundated mangrove soil and screened for the ability to degrade PET and PS microplastics. Optical density at 600 nm and colony forming unit counts were measured to evaluate the growth response of the microbes in the presence of PS and PET microplastics at different times of exposure. Structural and surface changes that occurred post biodegradation on the micro-plastics were determined through EDS and SEM analysis. The obtained results demonstrated the elongation and disappearance of peaks, suggesting that the microbial consortium could modify both types of microplastics. The overall results of the microplastic degradation showed varied degrees of weight loss after 90 experimental days, with the treated plot recorded 18% weight loss. The augmented soil was increased in the concentrations of Si S, and Fe and decreased in the concentrations of C, O, Na, Mg, Al, Cl, and K after bioremediation.
Keywords
Polyethylene terephthalate, Polystyrene biodegradation, Mangrove, Bacteria, Marine
Divisions
Science
Publication Title
Journal of Environmental Management
Volume
304
Publisher
Elsevier
Publisher Location
24-28 OVAL RD, LONDON NW1 7DX, ENGLAND