Influence ofnanovesicle type, nanoliposome and nanoniosome, on antioxidant and antimicrobial activities of encapsulated myrtle extract: A comparative study
Document Type
Article
Publication Date
1-1-2022
Abstract
For the first time, a comparative study on antioxidant and antimicrobial properties of two lipid-based nanovesicles encapsulated myrtle extract, including different formulations of nanoliposome and nanoniosome, is conducted. GC-MS analysis of the hydroethanolic extract of myrtle leaf revealed 1,2,3-benzenetriol (40.62%) as a major component. It is worth mentioning that both nanovesicles were prepared in the absence of toxic solvents and cholesterol. The results of this study have displayed that as-fabricated nanovesicles were temperature and pH-sensitive. The differential scanning calorimetry (DSC) study showed a significant improvement in the thermal phase transition of the myrtle extract after encapsulation. In addition, the nanoniosome formulation was more stable than the nanoliposome formulation. The myrtle extract release rate was controlled in vitro by adjusting the wt. % of constituents in lipid and aqueous phases of the nanovesicles. The results have confirmed the fact that the release rate of extract from nanovesicles plays a crucial role in controlling biological activities, as was expected. The myrtle extract-encapsulated nanoliposomes with higher release rates exhibited more robust antioxidant activity compared to that of nanoniosomes. In the current work, antioxidant activities by FRAP were negligible compared with the DPPH method. The nanoliposome formulations showed the lowest MIC and highest zone inhibition against S. aureus, E.coli, and S. enteritidis compared to that of nanoniosome formulations.
Keywords
Myrtle (Myrtus communis L, ) extract, Thermo-sensitivity nanovesicles, Sunflower oil, FRAP, DPPH, MBC
Divisions
nanocat
Funders
Sari Agricultural Sciences and Natural Resources University
Publication Title
Food and Bioprocess Technology
Volume
15
Issue
1
Publisher
Springer
Publisher Location
ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES