Design of non-faradaic EDLC from plasticized MC based polymer electrolyte with an energy density close to lead-acid batteries
Document Type
Article
Publication Date
1-1-2022
Abstract
The investigation of biodegradable polymer electrolyte for energy device applications is of great importance as a suitable alternative to the conventional electrolytes. This paper explores the employment of plasticized methylcellulose (MC)-based polymer electrolytes for energy storage EDLC device application with an energy density (46.29 Wh kg(-1)) close enough to lead-acid batteries. The results have shown that the inclusion of plasticizer can enhance the ionic conductivity to 1.17 x 10(-3) S CM-1. It was found that the prepared polymer electrolyte was stable up to 2.1 V, which is sufficient to be employed as electrolyte and separator in fabrication of electrical double layer capacitor (EDLC). Both t(e) and t(i), values have been quantified from the TNM measurements, where the t(i) values for the electrolytes containing 32 wt.% and 40 wt. % of glycerol plasticizer have been found as 0.963 and 0.802, respectively. The performance of the assembled EDLC was assessed using both cyclic voltammetry (CV) and charge-discharging responses. The absence of redox peaks is evidenced from the CV. The value of initial specific capacitance (C-spe) of the fabricated EDLC is 411.52 F g(-1). The results achieved in this study can be considered as a breakthrough in EDLC devices. (C) 2021 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
Keywords
Plasticized electrolyte, MC, NaI, EEC modeling, Transport properties, EDLC device
Divisions
PHYSICS
Funders
University of Sulaimani, King Saud University,Komar University of Science and Technology,King Saud University [RSP-2021/29]
Publication Title
Journal of Industrial and Engineering Chemistry
Volume
105
Publisher
Elsevier
Publisher Location
STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA