CRISPR/dCas9-based systems: Mechanisms and applications in plant sciences
Document Type
Article
Publication Date
10-1-2021
Abstract
RNA-guided genomic transcriptional regulation tools, namely clustered regularly interspaced short palindromic repeats interference (CRISPRi) and CRISPR-mediated gene activation (CRISPRa), are a powerful technology for gene functional studies. Deriving from the CRISPR/Cas9 system, both systems consist of a catalytically dead Cas9 (dCas9), a transcriptional effector and a single guide RNA (sgRNA). This type of dCas9 is incapable to cleave DNA but retains its ability to specifically bind to DNA. The binding of the dCas9/sgRNA complex to a target gene results in transcriptional interference. The CRISPR/dCas9 system has been explored as a tool for transcriptional modulation and genome imaging. Despite its potential applications and benefits, the challenges and limitations faced by the CRISPR/dCas9 system include the off-target effects, protospacer adjacent motif (PAM) sequence requirements, efficient delivery methods and the CRISPR/dCas9-interfered crops being labeled as genetically modified organisms in several countries. This review highlights the progression of CRISPR/dCas9 technology as well as its applications and potential challenges in crop improvement.
Keywords
CRISPR interference, Crop improvement, Gene silencing, RNAi, Transcriptional regulation, CRISPR/dCas9 system
Divisions
cebar
Publication Title
Plants-Basel
Volume
10
Issue
10
Publisher
MDPI
Publisher Location
ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND