Borosilicate glass Co-60 high dose rate brachytherapy thermoluminescence dosimetry

Document Type

Article

Publication Date

10-1-2021

Abstract

Brachytherapy is commonly used in treatment of cervical, prostate, breast and skin cancers, also for oral cancers, typically via the application of sealed radioactive sources that are inserted within or alongside the area to be treated. A particular aim of the various brachytherapy techniques is to accurately transfer to the targeted tumour the largest possible dose, at the same time minimizing dose to the surrounding normal tissue, including organs at risk. The dose fall-off with distance from the sources is steep, the dose gradient representing a prime factor in determining the dose distribution, also representing a challenge to the conduct of measurements around sources. Amorphous borosilicate glass (B2O3) in the form of microscope cover slips is recognized to offer a practicable system for such thermoluminescence dosimetry (TLD), providing for high-spatial resolution (down to < 1 mm), wide dynamic dose range, good reproducibility and reusability, minimal fading, resistance to water and low cost. Herein, investigation is made of the proposed dosimeter using a 1.25 MeV High Dose Rate (HDR) Co-60 brachytherapy source, characterizing dose response, sensitivity, linearity index and fading. Analysis of the TL glow curves were obtained using the T-max -T-stop method and first-order kinetics using GlowFit software, detailing the frequency factors and activation energy.

Keywords

Brachytherapy, Dosimetry, Microscope glass slide, Thermoluminescence

Divisions

fac_med,Science

Funders

Princess Nourah bint Abdulrahman University (RGP-1440-0016) (2)

Publication Title

Applied Radiation and Isotopes

Volume

176

Publisher

Elsevier

Publisher Location

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

This document is currently not available here.

Share

COinS