Roles and therapeutic implications of endoplasmic reticulum stress and oxidative stress in cardiovascular diseases

Document Type

Article

Publication Date

8-1-2021

Abstract

In different pathological states that cause endoplasmic reticulum (ER) calcium depletion, altered glycosylation, nutrient deprivation, oxidative stress, DNA damage or energy perturbation/fluctuations, the protein folding process is disrupted and the ER becomes stressed. Studies in the past decade have demonstrated that ER stress is closely associated with pathogenesis of obesity, insulin resistance and type 2 diabetes. Excess nutrients and inflammatory cytokines associated with metabolic diseases can trigger or worsen ER stress. ER stress plays a critical role in the induction of endothelial dysfunction and atherosclerosis. Signaling pathways including AMP-activated protein kinase and peroxisome proliferator-activated receptor have been identified to regulate ER stress, whilst ER stress contributes to the imbalanced production between nitric oxide (NO) and reactive oxygen species (ROS) causing oxidative stress. Several drugs or herbs have been proved to protect against cardiovascular diseases (CVD) through inhibition of ER stress and oxidative stress. The present article reviews the involvement of ER stress and oxidative stress in cardiovascular dysfunction and the potential therapeutic implications.

Keywords

Endoplasmic reticulum stress, Oxidative stress, Cardiovascular diseases

Divisions

fac_med

Funders

Research Committee of the University of Macau [Grant No: SRG201900154-ICMS & MYRG2019-00157-ICMS],Operation Fund of State Key Laboratory of Quality Research in Chinese Medicine of University of Macau (SKL-QRCM(UM)-2020-2022),HongKong RGC-Senior Research Fellow Scheme [Grant No: SRFS2021-4S04]

Publication Title

Antioxidants

Volume

10

Issue

8

Publisher

MDPI

Publisher Location

ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND

This document is currently not available here.

Share

COinS