Modelling and performance investigation of a solar chimney power plant with glass-covered solar collector

Document Type

Article

Publication Date

12-1-2024

Abstract

Solar chimney power plants (SCPP) exploit solar radiation to create an up-draft airflow to run a turbine. This article proposes an innovative design of an SCPP that consists of transparent glass covered solar collector. Outdoor experiments have been carried out in the arid climates of Tikrit city, Iraq, with galvanized metal tower installed instead of conventional PVC solar towers. Performance of the SCPP has been studied with and without transparent cover for collector periphery heights of 2 and 4 cm. Measurements of ambient temperature, chimney inlet temperature, interior and outlet air temperatures, humidity, air mass flow rate, and solar irradiance values were recorded from 9:00 am to 4:00 pm throughout the month of May 2021. Results show that the solar chimney collector with a periphery height of 2 cm performed better than that with the 4-cm periphery height. In addition, using transparent cover in SCPP increases the air outlet temperature by 16.4 degrees C and air flowrate augments by around 34%. Thermal efficiency of the solar chimney with non-covered tower is found to be 10.3% whereas for a glass covered tower it increases to 14.6%, which is a remarkable 41% enhancement. Likewise, mechanical and electrical power output augment by 39.6% and 40.3% using transparent cover in SCPP. Such innovation in SCPP design is proven apposite for hot arid climates.

Keywords

Solar chimney, glass-covered collector, mechanical power, thermal efficiency, electrical power

Divisions

umpedac

Publication Title

Energy Sources, Part A: Recovery, Utilization, and Environmental Effects

Volume

46

Issue

1

Publisher

Taylor & Francis

Publisher Location

530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA

This document is currently not available here.

Share

COinS