Nanophotonic-structured front contact for high-performance perovskite solar cells

Document Type

Article

Publication Date

7-1-2022

Abstract

We report the design of a nanophotonic metaloxide front contact aimed at perovskite solar cells (PSCs) to enhance optoelectronic properties and device stability in the presence of ultraviolet (UV) light. High-quality Cr-doped ZnO film was prepared by industrially feasible magnetron sputter deposition for the electron transport layer of PSCs. As a means, the influence of the Cr content on the film and device was systematically determined. In-depth device optics and electrical effects were studied using advanced three-dimensional opto-electrical multiphysics rigorous simulations, optimizing the front contact for realizing high performance. The numerical simulation was validated by fabricating PSCs optimized to reach high performance, energy conversion efficiency (ECE) = 17.3%, open-circuit voltage (V-OC) = 1.08 V, short-circuit current density (J(SC)) = 21.1 mA cm(-2), and fillfactor (FF) = 76%. Finally, a realistic front contact of nanophotonic architecture was proposed while improving broadband light absorption of the solar spectrum and light harvesting, resulting in enhanced quantum efficiency (QE). The nanophotonic PSC enables J(SC) improvement by similar to 17% while reducing the reflection by 12%, resulting in an estimated conversion efficiency over 23%. It is further demonstrated how the PSCs' UV-stability can be improved without considerably sacrificing optoelectronic performances. Particulars of nanophotonic designed ZnO:Cr front contact, PSCs device, and fabrication process are described.

Keywords

ZnO:Cr front contact, Magnetron sputtering, Perovskite solar cells, UV stability, Optics and electrical effects

Divisions

sch_ecs

Funders

Universiti Kebangsaan Malaysia, Malaysia [Grant No: LRGS/1/2019/UKM-UKM/6/1],King Saud University [Grant No: RSP-2021/34],Innovation and Technology Commission of Hong Kong [Grant No: GHP/040/19SZ]

Publication Title

Science China-Materials

Volume

65

Issue

7

Publisher

Science Press

Publisher Location

16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA

This document is currently not available here.

Share

COinS