Impact of gadolinium doping on BiFeO3-PbZrO3 for energy storage applications: Structural, microstructural, and thermistor properties

Document Type

Article

Publication Date

8-1-2024

Abstract

The solid-state reaction technique is used to prepare the Gd-doped BiFeO3-PbZrO3 at concentrations x = 0.05, 0.10, 0.15, and 0.20 with chemical formula 0.5(BiGdxFe1-xO3)-0.5(PbZrO3). Room-temperature XRD data are used to compute structural characteristics, such as dislocation density, microstrain, crystallite size, and percentage of crystallinity. The SEM micrographs indicate the spherical, tightly packed nature of materials with limited porosity. The extent to which the composites work at high temperatures (175-400 degrees C) as NTC thermistors. Understanding the properties of the NTC thermistor requires the calculation of the resistor constant, sensitivity index, and activation energies. Based on the frequency- and temperature-dependent AC conductivity of the composites, a high density of states was calculated.

Keywords

Gadolinium, Bismuth ferrite, XRD, AC conductivity, Density of states, NTC thermistor, SDG9

Divisions

nanotechnology

Publication Title

Inorganic Chemistry Communications

Volume

166

Publisher

Elsevier

Publisher Location

RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS

This document is currently not available here.

Share

COinS