DCNNLFS: A Dilated Convolutional Neural Network With Late Fusion Strategy for Intelligent Classification of Gastric Histopathology Images

Document Type

Article

Publication Date

8-1-2024

Abstract

Gastric cancer has a high incidence rate, significantly threatening patients' health. Gastric histopathology images can reliably diagnose related diseases. Still, the data volume of histopathology images is too large, making misdiagnosis or missed diagnosis easy. The classification model based on deep learning has made some progress on gastric histopathology images. However, traditional convolutional neural networks (CNNs) generally use pooling operations, which will reduce the spatial resolution of the image, resulting in poor prediction results. The image feature in previous CNN has a poor perception of details. Therefore, we design a dilated CNN with a late fusion strategy (DCNNLFS) for gastric histopathology image classification. The DCNNLFS model utilizes dilated convolutions, enabling it to expand the receptive field. The dilated convolutions can learn the different contextual information by adjusting the dilation rate. The DCNNLFS model uses a late fusion strategy to enhance the classification ability of DCNNLFS. We run related experiments on a gastric histopathology image dataset to verify the excellence of the DCNNLFS model, where the three metrics Precision, Accuracy, and F1-Score are 0.938, 0.935, and 0.959.

Keywords

Histopathology, Feature extraction, Convolutional neural networks, Cancer, Spatial resolution, Deep learning, Computational modeling, Gastric histopathology image, dilated convolution, late fusion strategy, classification model

Divisions

fsktm

Publication Title

IEEE Journal of Biomedical and Health Informatics

Volume

28

Issue

8

Publisher

Institute of Electrical and Electronics Engineers

Publisher Location

445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA

This document is currently not available here.

Share

COinS