Fabrication and characterization of dual-layer hollow fibre membranes incorporating poly(citric acid)-grafted GO with enhanced antifouling properties for water treatment
Document Type
Article
Publication Date
7-1-2024
Abstract
Membrane fouling during the filtration process is a perennial issue and could lead to reduced separation efficiency. In this work, poly(citric acid)-grafted graphene oxide (PGO) was incorporated into a matrix of single-layer hollow fibre (SLHF) and dual-layer hollow fibrr (DLHF) membranes, respectively, aiming to improve membrane antifouling properties during water treatment. Different loadings of PGO ranging from 0 to 1 wt% were first introduced into the SLHF to identify the best PGO loading for the DLHF preparation with its outer layer modified by nanomaterials. The findings showed that at the optimized PGO loading of 0.7 wt%, the resultant SLHF membrane could achieve higher water permeability and bovine serum albumin rejection compared to the neat SLHF membrane. This is due to the improved surface hydrophilicity and increased structural porosity upon incorporation of optimized PGO loading. When 0.7 wt% PGO was introduced only to the outer layer of DLHF, the cross-sectional matrix of the membrane was altered, forming microvoids and spongy-like structures (more porous). Nevertheless, the BSA rejection of the membrane was improved to 97.7% owing to an inner selectivity layer produced from a different dope solution (without the PGO). The DLHF membrane also demonstrated significantly higher antifouling properties than the neat SLHF membrane. Its flux recovery rate is 85%, i.e. 37% better than that of a neat membrane. By incorporating hydrophilic PGO into the membrane, the interaction of the hydrophobic foulants with the membrane surface is greatly reduced.
Keywords
Dual-layer hollow fibre, membrane, antifouling, functionalized graphene oxide, protein separation
Divisions
CHEMISTRY
Funders
Universiti Teknologi Malaysia (UTM) (Q.J130000.21A2.05E01)
Publication Title
Environmental Technology
Volume
45
Issue
15
Publisher
Taylor & Francis
Publisher Location
2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND