Mineralogy and Geochemistry of the Paleocene-Eocene Palana Formation in Western Rajasthan, India: Insights for Sedimentary Paleoenvironmental Conditions and Volcanic Activity

Document Type

Article

Publication Date

2-1-2024

Abstract

Organic-rich shale rocks from the Paleocene-Eocene Palana Formation in western Rajasthan, India, were systematically investigated based on inorganic and organic geochemistry combined with microscopic examinations to evaluate the sedimentary paleoenvironmental conditions and volcanic activity and their impact on the high organic carbon accumulation. The Palana shales are categorized by high organic matter (OM) and sulfur contents, with total values up to 36.23 wt.% and 2.24 wt.%, respectively. The richness of phytoplankton algae (i.e., telalginite and lamalginite) together with redox-sensitive trace elements further suggests a marine setting and anoxic environmental conditions during the Paleocene-Eocene. The significant low oxygen conditions may contribute to enhancing the preservation of organic matter during deposition. The mineralogical and inorganic geochemical indicators demonstrate that the Palana organic-rich shale facies was accumulated in a warm and humid climate with moderate salinity stratification conditions in the water columns, thereby contributing to the high bioproductivity of the phytoplankton algae blooms within the photic zone. The presence of significant contents of zeolite derived from volcanic material together with silica minerals such as apophyllite and tridymite in most of the Palana organic-rich shales indicates a volcanic origin and supports hydrothermal activities during the Paleocene-Eocene period. These volcanic activities in this case are considered the influx of large masses of nutrients into the photic zone due to the ash accumulation, as indicated by the presence of the zeolites in the Palana shales. Therefore, the high bio-productivity associated with effective OM preservation led to the organic carbon accumulation in the Palana Formation during the Paleocene-Eocene.

Keywords

organic-rich shale, bioproductivity, anoxia conditions, organic accumulation, Rajasthan, western India

Divisions

GEOLOGY

Funders

Universiti Malaya

Publication Title

Minerals

Volume

14

Issue

2

Publisher

MDPI

Publisher Location

ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND

This document is currently not available here.

Share

COinS