Broadband multi-wavelength Brillouin-Raman fiber laser with frequency switching

Document Type

Article

Publication Date

12-1-2023

Abstract

We purpose and demonstrate the switchable multi-wavelength Brillouin-Raman fiber laser (MBRFL) through a bi-directional Raman pumping scheme. The laser structure is arranged in a linear cavity by including a physical mirror at one side of the cavity. The switching operation for MBRFL with single-and double-wavelength spacing is implemented by optimizing the Raman power distribution through a variable optical coupler. This effect on feedback power of the physical mirror provides the difference between odd-and even-order Stoke lines' maximum power on different sides of the cavity with 10 GHz and 20 GHz spacing. A 90/10 coupler is found to be the optimal. Up to 460 flat-amplitude lines within only a 0.5-dB flatness range, average -5 dBm Stokes peak power (SPP), 10 GHz frequency spacing, and an average optical signal-to-noise ratio (OSNR) of 26 dB are observed. All the counted laser lines are spread across a 37 nm bandwidth. Simultaneously, 170 Stoke lines with overall -2 dBm SPP, 28 dB OSNR, and 20 GHz frequency spacing are attained on other side of the cavity. These are achieved when the Raman pump power is set only at 900 mW. To date, this is the simplest cavity design with the flattest spectrum and highest output power for both wavelength spacing and excellent OSNR achieved in multi-wavelength fiber lasers that incorporate a single low-power Raman pump unit.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Keywords

Generation, Erbium doped fiber, Rayleigh scattering

Divisions

fsktm

Funders

None

Publication Title

Optics Express

Volume

31

Issue

25

Publisher

Optical Society of America

Publisher Location

2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA

This document is currently not available here.

Share

COinS