Stretchable, self-healable and highly conductive natural-rubber hydrogel electrolytes for supercapacitors: Advanced wearable technology

Document Type

Article

Publication Date

11-1-2023

Abstract

Promising advancements in energy technologies lie in the development of highly flexible hydrogel electrolytes, which offer biodegradability, cost-effectiveness, and safety. However, striking a balance between stretchability, remarkable ionic conductivity, and self-healing ability remains challenging. In this research, we present a novel approach involving the utilization of epoxidized natural rubber (ENR)/acrylamide (AAm)/acrylic acid (AA) copolymer hydrogel electrolytes formed through a free radical mechanism. To further enhance the conductivity, hydrogel electrolytes were immersed in 1 M sodium sulfate (Na2SO4) salt solutions for varying periods. By capitalizing on the hydrogen bonding and electrostatic interactions within the hydrogels and the hydrogel-salt interaction, the resulting hydrogel exhibited an impressive ionic conductivity of 19.4 x 10-2 S/cm, a stretchability of 550 % from its initial length, and demonstrated self-healing capabilities. Additionally, employing symmetrical porous carbon electrodes, the hydrogel-based electric double layer capacitor (EDLC) achieved an outstanding specific capacitance of 55.65 F/g, enduring stable cycling over 3500 cycles without significant discharge. Notably, the mechanical strength of the hydrogel is significantly improved after the self-healing process. Importantly, this study highlights the significant role of immersion time in improving the ionic conductivity and functionality of hydrogel electrolytes.

Keywords

Hydrogels electrolytes, Natural rubber, Electric double -layer capacitors, Sodium sulfate

Divisions

PHYSICS,umpedac

Funders

Technology Development Fund 1 (TeD1) from the Ministry of Science, Technology, and Innovation (MOSTI), Malaysia (FP076-2022),Fundamental Research Grant Scheme (FRGS)

Publication Title

Journal of Energy Storage

Volume

71

Publisher

Elsevier

Publisher Location

RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS

This document is currently not available here.

Share

COinS