Cycle-object consistency for image-to-image domain adaptation

Document Type

Article

Publication Date

6-1-2023

Abstract

Recent advances in generative adversarial networks (GANs) have been proven effective in performing do-main adaptation for object detectors through data augmentation. While GANs are exceptionally success-ful, those methods that can preserve objects well in the image-to-image translation task usually require an auxiliary task, such as semantic segmentation to prevent the image content from being too distorted. However, pixel-level annotations are difficult to obtain in practice. Alternatively, instance-aware image -translation model treats object instances and background separately. Yet, it requires object detectors at test time, assuming that off-the-shelf detectors work well in both domains. In this work, we present AugGAN-Det, which introduces Cycle-object Consistency (CoCo) loss to generate instance-aware trans-lated images across complex domains. The object detector of the target domain is directly leveraged in generator training and guides the preserved objects in the translated images to carry target-domain ap-pearances. Compared to previous models, which e.g., require pixel-level semantic segmentation to force the latent distribution to be object-preserving, this work only needs bounding box annotations which are significantly easier to acquire. Next, as to the instance-aware GAN models, our model, AugGAN-Det, inter-nalizes global and object style-transfer without explicitly aligning the instance features. Most importantly, a detector is not required at test time. Experimental results demonstrate that our model outperforms re-cent object-preserving and instance-level models and achieves state-of-the-art detection accuracy and visual perceptual quality.(c) 2023 Elsevier Ltd. All rights reserved.

Keywords

Generative adversarial networks, Instance -aware image -translation, Domain adaptation, Cross -domain object detection

Divisions

fsktm

Publication Title

Pattern Recognition

Volume

138

Publisher

Elsevier

Publisher Location

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND

This document is currently not available here.

Share

COinS