Elucidating the mixing effect of dual polymers via physical blending on its physicochemical, thermal and electrical properties for dye-sensitized solar cells

Document Type

Article

Publication Date

4-1-2023

Abstract

Blending two different polymers through a physical blending is a wise alternative to create a new polymer with desired properties showing a synergistic effect of the individual polymers. In this work, polyacrylonitrile (PAN) and poly (1-vinylpyrrolidone-co-vinyl acetate) P(VP-co-VAc) were blended in a fixed amount of binary organic solvent of ethylene carbonate and propylene carbonate. The weight ratios were varied to 30:70, 50:50 and 70:30 wt%, respectively. Polymer electrolytes in a gel and solid form are safer than liquid ones. Thus 50:50PP and 70:30PP samples were selected and incorporated with iodide/triiodide redox mediators such as sodium iodide salt, 1-methyl-3-propylimidazolium iodide (MPII) ionic liquid and iodine for dye-sensitized solar cells (DSSC) application. Polymer electrolytes containing 50 wt.% of both PAN and P(VP-co-VAc) with iodide/triiodide redox mediator (50:50PP-IL) has achieved maximum ionic conductivity, short-circuit (JSC) current and power con -version efficiency (PCE, eta) of 6.10 x 10-3 S cm-1, 11.1 mA cm- 1 and 5.35%, respectively.

Keywords

Blending polymer, Physical blending, Relaxation time, Dye-sensitized solar cell

Divisions

umpedac

Publication Title

Electrochimica Acta

Volume

447

Publisher

Elsevier

Publisher Location

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

This document is currently not available here.

Share

COinS