Optimization of up-flow velocity and feed flow rate in up-flow anaerobic sludge blanket fixed-film reactor on bio-hydrogen production from palm oil mill effluent

Document Type

Article

Publication Date

3-1-2023

Abstract

The present study aims to optimize key operational parameters of the up-flow anaerobic sludge blanket fixed-film (UASFF) reactor using response surface methodology (RSM). A central composite design (CCD) has been applied to accomplish thirteen experimental runs given two main variables, namely feed flow rate (Qf), and up-flow velocity (Vup). The maximum hydrogen content, hydrogen production rate (HPR), hydrogen yield (HY), and COD removal were achieved at 55%, 4800 mL H2/cycle, 321 mL H2/g-COD, and 24.33%, respectively at Qf 8 L/ cycle (HRT = cycle = 10.5 h) and Vup 2.0 m/h. The performance of the parameters from the optimum identified area was assessed at Qf 5.5 L/cycle (HRT = 15.3 h), and Vup 1.8 m/h, resulted in a maximum hydrogen content, HY, and HPR of 72%, 340 mL H2/g-COD, and 5100 mL H2/cycle, respectively. At optimum conditions, Clostridium sensu stricto 1 was found to be the dominant hydrogen-producing bacteria in the system. The results of this study may provide a practical basis for developing a UASFF reactor prototype based on empirical data.

Keywords

Palm oil mill effluent, Up-flow anaerobic sludge blanket fixed-film, reactor, Bio-hydrogen, Response surface methodology, Microbial community analysis

Divisions

ocean,umpedac

Publication Title

Energy

Volume

266

Publisher

Elsevier

Publisher Location

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

This document is currently not available here.

Share

COinS