Effects of polymerization oxidants on the fabrication of electrospun PPy/WO3 composites

Document Type

Article

Publication Date

1-1-2023

Abstract

In this work, polypyrrole (PPy) and incomplete polymerized pyrrole (Pyr) were synthesized from pyrrole monomer via chemical oxidative polymerization using two different oxidants: ammonium persulfate (APS) and ammonium bisulfate (ABS). Electrical, structural, and morphological characteristics of PPy and Pyr are examined through electrical conductivity test, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The presence of tungsten oxide (WO3) and PPy/WO3 was likewise confirmed by FTIR and XRD. PPy synthesized with APS showed conductivity of 0.53 S/m, while Pyr synthesized with ABS had conductivity of 1.39 x 10(-7) S/ m. PPy with higher conductivity was used for hybridization with WO3 and for subsequent electrospinning. The presence of NH stretching in Pyr which is absent in PPy indicates the NH stretch from pyrrole. Further processing showed a successful electrospinning of PPy and PPy/WO3 with the aid of PU as copolymer. Electrospun PPy/PU displayed globular morphology, while electrospun PPy/PU/WO3 exhibited fibrous morphology. From this study, it is inferred that electrical conductivity is a crucial factor in ensuring a successful electrospinning of fibrous conductive polymer materials. In addition, APS has polymerized pyrrole successfully, while use of ABS yields an incomplete pyrrole polymerization. With further parameter improvement, ABS can be potentially used as an alternative oxidant for polymerization.

Keywords

Conductive polypyrrole, Thin-films, Sensing properties, Sensor' nanofibers, Polyaniline, Polymers, Membranes, Hybrids, Design

Divisions

fac_eng,sch_che,mechanical

Funders

Ministry of Higher Education (MOHE) Malaysia (Grant No: FRGS/1/2022/TK09/UM/02/33),Universiti Malaya (Grant No: GPF060B-2020)

Publication Title

Journal of Materials Science: Materials in Electronics

Volume

34

Issue

1

Publisher

Springer

Publisher Location

VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

This document is currently not available here.

Share

COinS