Artificial intelligence application in demand response: Advantages, issues, status, and challenges

Document Type

Article

Publication Date

1-1-2023

Abstract

In recent years, there has been a significant growth in demand response (DR) as a cost-effective technique of providing flexibility and, as a result, improving the dependability of energy systems. Although the tasks associated with demand side management (DSM) are extremely complex, the use of large-scale data and the frequent requirement for near-real-time decisions mean that Artificial Intelligence (AI) has recently emerged as a key technology for enabling DSM. Optimization algorithm methods can be used to address a variety of problems, including selecting the optimal set of consumers to respond to, learning their attributes and preferences, dynamic pricing, device scheduling, and control, as well as determining the most effective way to incentive and reward participants in DR schemes fairly and effectively. The implementation optimization algorithm needs proper selection to mitigate the cost of energy consumption. Due to that reason, this paper outlines various challenges and opportunities in developing, utilizing, controlling, and scheduling the DR scheme's optimization algorithm. In addition, several issues in applications and advantages of optimization techniques in artificial intelligence approaches are discussed. The importance of implementing demand response mechanisms in developing countries is also presented. In addition, the status of demand response optimization in demand-side management solutions is also illustrated congruently.

Keywords

Demand response, Optimization, Machine learning, Job shop scheduling, Task analysis, Support vector machines, Pricing, Artificial intelligence (AI), demand response (DR), demand side management (DSM), optimization algorithms

Divisions

fac_eng

Funders

Ministry of Higher Education (MOHE) of Malaysia through the Fundamental Research Grant Scheme(FRGS) (FRGS/1/2021/FKE/F00465)

Publication Title

IEEE ACCESS

Volume

11

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Publisher Location

445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA

This document is currently not available here.

Share

COinS