Thermal characterization and stress analysis of Ho2O3 thin film on 4H-SiC substrate
Document Type
Article
Publication Date
12-1-2022
Abstract
The performance of a metal oxide semiconductor during operation could be hindered significantly due to thermodynamic instability and mismatch between the gate oxide layer and the substrate. Owing to variation in temperature during thermal applications, the thin film layers and substrates in complementary metal oxide semiconductor (CMOS) structures are subjected to high thermal stresses, which can result in large deformation and failure. In this study, the distribution of heat and thermal stress between the Ho2O3 thin film and the SiC substrate has been simulated numerically with finite element modelling and analysis software (ANSYS). This is necessary to emulate the thermal behaviour of the structure under different thermal loadings, and for each temperature loading, the effects of thermal stress and deformation on the structure were also evaluated. Based on the results of the simulation, an optimum temperature was suggested. The thermal stability and characteristics of the thin film layer/SiC structure were evaluated and validated for better electrical performance.
Keywords
Thermal stress, Deformation, Temperature, Reliability, Simulation, Interface
Divisions
mechanical
Funders
Ministry of Higher Edu- cation (MOHE) Malaysia via the Fundamental Research Grant Scheme (FRGS),Universiti Malaya (UM) via Southeast Asia - Taiwan Universities (SATU) Joint Research Scheme (FRGS/1/2022/TK09/UM/02/33),Universiti Malaya (UM) via Southeast Asia - Taiwan Universities (SATU) Joint Research Scheme (ST009-2022)
Publication Title
Materials Science in Semiconductor Processing
Volume
152
Publisher
Elsevier
Publisher Location
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND