Accelerating the controlled synthesis of WO3 photoanode by modifying aerosol-assisted chemical vapour deposition for photoelectrochemical water splitting

Document Type

Article

Publication Date

4-28-2022

Abstract

Aerosol-assisted chemical vapour deposition (AACVD) is capable of producing WO3 film with good optical and electrical properties for photoelectrochemical (PEC) water splitting. However, the conventional AACVD method is time-consuming because post-annealing treatment is usually required after WO3 film was deposited under nitrogen flow. Therefore, we omitted the post-annealing treatment by employing purified air as carrier gas (known as one-step) instead of nitrogen (known as two-step) which decreases the fabrication time by 13-fold. One-step WO3 also shows improved charge separation and PEC reaction due to the coexistence of (0 0 2), (0 2 0) and (2 0 0) facets and higher oxygen vacancies. Further optimiza-tion using acetone/ethanol as solvent, 10 min deposition time and 450 degrees C deposition temperature leads to photocurrent density of 0.32 mA cm(-2) at 1.23 V-RHE, which is the highest performance reported for AACVD-based WO3 photoanode. The development of rapid and industrially applicable deposition method would pave the way for real practice of PEC technology. (C) 2021 Elsevier Ltd. All rights reserved.

Keywords

Aerosol-assisted chemical vapour deposition, Thin film, Nanostructure, Photoelectrochemical water splitting, WO3

Divisions

nanotechnology

Funders

Universiti Kebangsaan Malay-sia [Grant No: GUP-2020-073]

Publication Title

Chemical Engineering Science

Volume

252

Publisher

Pergamon-Elsevier Science Ltd

Publisher Location

THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND

This document is currently not available here.

Share

COinS