Highly sensitive temperature-independent FBG-based sensor embedded in thermoplastic polyurethane using 3D printing technology for the measurements of torsion

Document Type

Article

Publication Date

10-1-2022

Abstract

A new design of optical Fiber Bragg Grating (FBG)-based sensor for the measurement of torsion (twist) has been developed, which, while offering a high level of accuracy, can be fabricated inexpensively using 3D printing technology. In this sensor design, an FBG is embedded inside the thermoplastic polyurethane (TPU) filament, which acts as the sensing pad for the FBG, taking advantage of its highly elastic properties and excellent sensitivity to variations in local strain. Experiments conducted have shown that the embedded FBG-based sensor can be used effectively in the measurements of torsion or rotation, at a bonding angle of 45 degrees, giving an average responsivity of 0.95 pm/deg in both the clockwise and anticlockwise direction over the range of -100 degrees to + 100 degrees, with good linearity of up to 99%. Furthermore, the device has been developed to allow for the effects of any temperature changes to be compensated by including an additional but `untwisted' FBG in the sensor design. It provides a temperature sensitivity of 18.90 pm/degrees C. This design of twist measurement sensor described in this work also shows a good response in the underground soil movement, giving an average responsivity of 0.95 pm/ deg in both the clockwise and anticlockwise direction over the range of -100 degrees to + 100 degrees, with good linearity of up to 99%. This proves that this fabricated device can be made applicable to a wide range of engineering ap-plications reliably and inexpensively.

Keywords

Fiber Bragg grating, Torsion sensor, Temperature -independent, 3D printing technology, Thermoplastic polyurethane

Divisions

photonics

Funders

Universiti Malaya under the grant UM Innovate [PPSI-2020-HICOE-02],Newton- Ungku Omar Fund [PPSI-2020-HICOE-02],UK Department for Business, Energy and Industrial Strategy,Malaysian Industry -Government Group for High Technology (MIGHT),Royal Academy of Engineering - UK

Publication Title

Sensors and Actuators A-Physical

Volume

346

Publisher

Elsevier Science SA

Publisher Location

PO BOX 564, 1001 LAUSANNE, SWITZERLAND

This document is currently not available here.

Share

COinS