Centrality analysis in a drug network and its application to drug repositioning
Document Type
Article
Publication Date
4-15-2021
Abstract
Centrality measures play a vital role in network analysis by which important nodes within a network are identified from structural perspectives. In this study, we applied three fundamental centrality measures (degree, closeness, and betweenness) to analyze a drug network where drugs are connected based on their side-effect similarities. The results suggest that centralities of drugs in the network may have a significant implication in drug repositioning - a process of discovering new therapeutic uses of existing drugs. Given a particular disease, the drugs that have been approved for treating it were ranked by their centralities. It is shown that the top central ones among them are more likely to repurpose their neighboring drugs as new treatment options for the disease, as compared to their random and peripheral counterparts. Our predictions have proved to be in line with clinical interests indicated by the existing clinical studies in ClinicalTrials.gov database. The present work offers novel insights into complementing drug repositioning efforts while portraying the significance of network centrality measures in guiding systematic analysis for a successful network application. (c) 2020 Elsevier Inc. All rights reserved.
Keywords
Network analysis, Centrality, Network application, Drug networks, Drug repositioning
Divisions
Science
Publication Title
Applied Mathematics and Computation
Volume
395
Publisher
Elsevier Science Inc
Publisher Location
STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA