Synthesis of Anatase Titanium Dioxide Nanotube Arrays via Electrochemical Anodization

Document Type

Article

Publication Date

1-1-2021

Abstract

Titanium dioxide (TiO2) nanotube arrays (NTAs) material have received attention due to their high stability in optoelectronic devices. As-prepared TiO2 nanotubes layers are amorphous and their properties are not sufficient enough to applied in device applications. The TiO2 NTAs was synthesized by electrochemical anodization method. The medium was mixed to facilitate the growth of TiO2 NTAs and annealed to improve the anatase structure. The field emission scanning electron microscopy (FESEM) images revealed the prepared TiO2 NTAs grow uniformly with average diameter 50.82 nm (450 °C) and 68.17 nm (as-prepared sample). The Raman spectroscopy reported the annealing temperature is critical issue to determine the crystallinity and structure of TiO2. The X-ray diffraction pattern showed the TiO2 NTAs exhibit anatase phase with prominent (101) diffraction peak that was recorded for the sample annealed at 450 °C. The band gap value (3.21 eV) was obtained for the sample annealed at 450 °C due to homogeneity of the TiO2 NTAs structures. This approach is cost-effective in synthesizing high quality ordered of TiO2 NTAs for optoelectronic applications. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Keywords

Annealing temperature, Anodization, TiO2 NTAs

Divisions

Science,PHYSICS

Publication Title

Lecture Notes in Mechanical Engineering

Volume

46

Publisher

Springer Nature

This document is currently not available here.

Share

COinS