Isotopic shift in magic nuclei within relativistic mean-field formalism
Document Type
Article
Publication Date
1-1-2021
Abstract
The ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies are calculated for the isotopic chain of Ca, Sn, Pb, and Z = 120 nuclei. The recently developed G3 and IOPB-I forces along with the DD-ME1 and DD-ME2 sets are used in the analysis employing the relativistic mean-field approximation. To locate the magic numbers in the superheavy region and to explain the observed kink at neutron number N = 82 for Sn isotopes, a three-point formula is used to see the shift of the observable and other nuclear properties in the isotopic chain. Unlike the electronic configuration, due to strong spin-orbit interaction, the higher spin orbitals are occupied earlier than the lower spin, causing the possible kink at the neutron magic numbers. We find peaks at the known neutron magic number with the confirmation of sub-shell, shell closure respectively at N = 40, 184 for Ca and 304120. © 2021 IOP Publishing Ltd.
Keywords
isotopic shift, magic nuclei, nucleon density distribution, relativistic mean field approximation, symmetry energy, three point formula
Divisions
PHYSICS
Publication Title
Physica Scripta
Volume
96
Issue
12
Publisher
IOP Publishing: Hybrid Open Access