Garcinia mangostana shell and tradescantia spathacea leaf extract-mediated one-pot synthesis of silver nanoparticles with effective anti-fungal properties

Document Type

Article

Publication Date

1-1-2021

Abstract

Background: The feasibility of plant extracts for metallic nanoparticle fabrication has been demonstrated. Each plant species impacts differently on formed nanoparticles, thus specific plants need to be explored in detail. Objective: Continuing the fabrication of nanoparticles using green method, Garcinia mangostana shell and Tradescantia spathacea leaf extract are exploited as reducing sources to form two types of silver nanoparticles (GMS-AgNPs and TSL-AgNPs) less than 50 nm. Methods: Structural characterization of GMS-AgNPs and TSL-AgNPs was performed by ultravioletvisible spectrophotometry (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray energy dispersive spectrometer (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antifungal tests of GMS-AgNPs and TSL-AgNPs were performed with Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum. Results: UV-vis spectra with the 440-nm peak demonstrate the silver nanoparticle formation. FTIR analysis shows the GMS-AgNPs and TSL-AgNPs modified by organic functional groups. The SEM and TEM images indicate that the GMS-AgNPs are spherical shaped with rough edged, while the TSL-AgNPs are spherical shape with smooth surface. The GMS-AgNP average size (15.8 nm) is smaller than TSL-AgNP (22.4 nm). In addition, antifungal tests using Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum reveal that GMS-AgNPs and TSL-AgNPs can significantly inhibit the proliferation of these fungal strains. Conclusion: Garcinia mangostana shell and Tradescantia spathacea leaf extract as renewable and eco-friendly resources playing a dual role for nanoparticle biosynthesis create GMS-AgNPs and TSL-AgNPs with high antifungal efficiency for biomedical or agricultural applications.

Keywords

Silver nanoparticle, Antifungi, Phytoconstituent, Green chemistry, Garcinia mangostana, Tradescantia spathacea

Divisions

fac_eng

Funders

Domestic Master/PhD Scholarship Program of Vingroup Innovation Foundation [VINIF.2019.TS.72]

Publication Title

Current Nanoscience

Volume

17

Issue

5

Publisher

Bentham Science Publishers

Publisher Location

EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES

This document is currently not available here.

Share

COinS