Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories
Document Type
Article
Publication Date
9-1-2022
Abstract
In this novel work, applying boundary shape function differential quadrature hierarchical finite element method (DQHFEM) will be employed to analyze frequency, damping, bending, and buckling of an embedded sandwich nanoplate using different plate theories such as refined zigzag theory (RZT), sinusoidal shear deformation theory (SSDT), first-order shear deformation theory (FSDT) and classical plate theory (CPT). The face sheets as well as the core layer of the sandwich structure respectively are formed by porous material and nanocomposites reinforced with graphene platelets (GPLs) considering various dispersion. According to the Halpin-Tsai micromechanics model, Young's modulus, as well as the rule of mixture for density as well as Poisson's ratio related to the face sheets, can be obtained. Further, for modeling the mentioned sandwich structure much more realistic, Kelvin-Voigt model is applied. In order to gain motion of equations, D'Alembert's principle is utilized where size influences can be contemplated as well using higher-order strain gradient nonlocal theory. In this comprehensive research, diverse parameters featuring the influences of structural damping, strain gradient parameters, GPL volume percent, dispersion, viscoelastic medium, porosity, boundary edges, and geometric variables upon vibration, buckling, and bending behaviors correlative to this structure. It is ascertained that RZT is the most accurate theory among other mentioned theories in estimating the static and dynamic response of structure which needs no shear correction factors. Moreover, the presence of GPLs can make the entire sandwich structure stiffer and dispersion patterns of pores, as well as GPLs, can affect the vibration, buckling, and bending of the structure.
Keywords
Differential, Quadrature, Hierarchical, Buckling, Vibration, Porous, Sandwich, Structure
Divisions
mechanical
Funders
National Natural Science Foundation of China [Grant No:(NSFC) 11872207],Open Foundation of the State Key Laboratory of Silicon Materials,PR China [Grant No:SKL2020-7],Foundation of State Key Laboratory of Mechanics and Control of Mechanical Structures, PR China [Grant No:MCMS-I-0520G01],National Key Research and Development Program of China [Grant No:2019YFA0708904]
Publication Title
Thin-Walled Structures
Volume
178
Publisher
Elsevier
Publisher Location
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND