An enhanced lexicon-based approach for sentiment analysis: a case study on illegal immigration
Document Type
Article
Publication Date
9-1-2020
Abstract
Purpose Research on sentiment analysis were mostly conducted on product and services, resulting in scarcity of studies focusing on social issues, which may require different mechanisms due to the nature of the issue itself. This paper aims to address this gap by developing an enhanced lexicon-based approach. Design/methodology/approach An enhanced lexicon-based approach was employed using General Inquirer, incorporated with multi-level grammatical dependencies and the role of verb. Data on illegal immigration were gathered from Twitter for a period of three months, resulting in 694,141 tweets. Of these, 2,500 tweets were segregated into two datasets for evaluation purposes after filtering and pre-processing. Findings The enhanced approach outperformed ten online sentiment analysis tools with an overall accuracy of 81.4 and 82.3% for dataset 1 and 2, respectively as opposed to ten other sentiment analysis tools. Originality/value The study is novel in the sense that data pertaining to a social issue were used instead of products and services, which require different mechanism due to the nature of the issue itself.
Keywords
Sentiment analysis, Lexicon-based, Social issue, Twitter, General inquirer
Divisions
fsktm,infosystem
Publication Title
Online Information Review
Volume
44
Issue
5
Publisher
Emerald
Publisher Location
HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND