Optimal Homotopy Asymptotic Method-Least Square for Solving Nonlinear Fractional-Order Gradient-Based Dynamic System from an Optimization Problem

Document Type

Article

Publication Date

1-1-2020

Abstract

In this paper, we consider an approximate analytical method of optimal homotopy asymptotic method-least square (OHAM-LS) to obtain a solution of nonlinear fractional-order gradient-based dynamic system (FOGBDS) generated from nonlinear programming (NLP) optimization problems. The problem is formulated in a class of nonlinear fractional differential equations, (FDEs) and the solutions of the equations, modelled with a conformable fractional derivative (CFD) of the steepest descent approach, are considered to find the minimizing point of the problem. The formulation extends the integer solution of optimization problems to an arbitrary-order solution. We exhibit that OHAM-LS enables us to determine the convergence domain of the series solution obtained by initiating convergence-control parameter Cj′s. Three illustrative examples were included to show the effectiveness and importance of the proposed techniques. © 2020 Oluwaseun Olumide Okundalaye et al.

Keywords

Optimal homotopy asymptotic method-least square (OHAM-LS), fractional-order gradient-based dynamic system (FOGBDS), nonlinear programming (NLP)

Divisions

MathematicalSciences

Publication Title

Advances in Mathematical Physics

Volume

2020

Publisher

Hindawi

This document is currently not available here.

Share

COinS