A radiomics study of textural features using magnetic resonance imaging for classification of breast cancer subtypes
Document Type
Conference Item
Publication Date
1-1-2020
Abstract
Breast cancer is usually screened using mammography and biopsy is used to confirm diagnosis. Recent radiomics approaches suggest predictive associations between images and medical outcome. This study aims to classify breast cancer subtypes using textural features derived from magnetic resonance imaging (MRI). Thirty-two lesions with histologic results that were definite were studied. A total of 174 textural features were extracted from four MRI sequences (Axial STIR, dynamic contrast enhance ( DCE) Phase 2, dynamic contrast enhance (DCE) subtracted Phase 2 and T1-weighted), and analysed using t-test, Kruskal-Wallis and principal component analysis (PCA). Evaluation was done using multinomial logistic regression and leave-one-out-cross-validation (LOOCV) methods. We found 14 texture features that consistently showed significant difference between malignant and normal breast tissues across all MRI sequences. Four textural features were useful in histological status with t-test accuracy of 71.4% and PCA accuracy of 64.3%. In hormonal receptor status, only five textural features were useful. The accuracies were also found to be poorer with 46.4% accuracy based on Kruskal-Wallis method and 46.4% accuracy using PCA method. As this is a preliminary study, the analysis should be extended to a larger sample size to accurately determine the possibility of clinical diagnosis.
Keywords
Radiomics study, Textural features, Magnetic resonance imaging, Classification, Breast cancer subtypes
Divisions
biomed
Volume
1497
Publisher
IOP PUBLISHING LTD
Publisher Location
DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
Event Title
11th International Seminar on Medical Physics (ISMP) 2019
Event Location
Kuala Lumpur, Malaysia
Event Dates
7-8 November 2019
Event Type
conference
Additional Information
11th International Seminar on Medical Physics (ISMP), Kuala Lumpur, Malaysia, Nov 07-08, 2019