One-step facile synthesis of poly(N-vinylcarbazole)-polypyrrole/graphene oxide nanocomposites: enhanced solubility, thermal stability and good electrical conductivity
Document Type
Article
Publication Date
1-1-2019
Abstract
Poly (N-vinylcarbazole)-polypyrrole/graphene oxide (PNVC-Ppy/GO) nanocomposites have been successfully prepared by one-step chemical oxidative polymerization using ferric chloride hexahydrate in the presence of dodecyl benzene sulfonic acid. The composite formation, morphology and the crystallinity of the composite have been characterized by FTIR spectroscopy, FESEM, and XRD, respectively. The incorporation of graphene oxide into the PNVC-Ppy matrix induces interaction between graphene oxide and PNVC-Ppy via hydrogen bonding and π–π* stacking. This π–π* stacking between the GO layers and PNVC-Ppy produces longer conjugation length leading to a higher solubility in organic solvents and enhanced electron mobility. The information of conjugation chain length and charge transfer capacity at the interface of the composite has been obtained from the Raman spectroscopy and photolumincience spectroscopy. The improved thermal stability and electrical d.c. conductivity (0.123 S/cm) of the resulting PNVC-Ppy/GO composite compared to the PNVC–Ppy copolymer (0.08 S/cm) is attributed to the incorporation of graphene oxide in the composite. © 2019, © 2019 Taylor & Francis Group, LLC.
Keywords
Graphene oxide, polypyrrole, poly (N-vinyl carbazole), solubility, conjugation length, conductivity
Divisions
CHEMISTRY
Funders
University of Malaya Research Grant (UMRG Program), Project Number: RP014A-15US offered by University of Malaya,Fundamental Research Grant Scheme (FRGS), Project Number: FP034-2013A offered by the Ministry of Higher Education Malaysia
Publication Title
Journal of Macromolecular Science, Part A
Volume
56
Issue
4
Publisher
Taylor & Francis