The role of electrolyte fluidity on the power generation characteristics of thermally driven electrochemical cells

Document Type

Article

Publication Date

1-1-2018

Abstract

Thermally driven electrochemical cells (thermocells) are able to convert thermal gradient applied across redox electrolyte into electricity. The performance of the thermocells heavily depends on the magnitude and integrity of the applied thermal gradient. Herein, we study the iodide/triiodide (I-/I3-) based 1-Ethyl-3-methyl-imidazolium Ethylsulfate ([EMIM][EtSO4]) solutions in a thermocell. In order to comprehend the role of fluidity of the electrolyte, we prepared set of solutions by diluting [EMIM][EtSO4] with 0.002, 0.004, and 0.010 mol of Acetonitrile (ACN). We realized a significant improvement in ionic conductivity (σ) and electrochemical Seebeck (Se) of diluted electrolytes as compared to base [EMIM][EtSO4] owing to the solvent organization. However, the infra-red thermography indicated faster heat flow in ACN-diluted-[EMIM] [EtSO4] as compared to the base [EMIM][EtSO4]. Therefore, the maximum power density of base [EMIM][EtSO4] (i.e. 118.5 μW.m-2) is 3 times higher than the ACN-diluted-[EMIM][EtSO4] (i.e. 36.1 μW.m-2) because of the lower thermal conductivity. Hence this paper illustrates the compromise between the fast mass/flow transfer due to fluidity (of diluted samples) and the low thermal conductivity (of the pure [EMIM][EtSO4]).

Keywords

Electrochemical cells, energy harvesting, ionic liquids, redox couple, thermoelectrics

Divisions

fac_eng

Funders

Fundamental Research Grant Scheme (FRGS) under the project FP064-2016A,University of Malaya Postgraduate Research Grant (PPP) under the project PG341-2016A

Publication Title

Sains Malaysiana

Volume

47

Issue

2

Publisher

Penerbit Universiti Kebangsaan Malaysia

This document is currently not available here.

Share

COinS