Students' learning style detection using tree augmented naive Bayes

Document Type

Article

Publication Date

1-1-2018

Abstract

Students are characterized according to their own distinct learning styles. Discovering students' learning style is significant in the educational system in order to provide adaptivity. Past researches have proposed various approaches to detect the students' learning styles. Among all, the Bayesian network has emerged as a widely usedmethod to automatically detect students' learning styles. On the other hand, tree augmented naive Bayesian network has the ability to improve the naive Bayesian network in terms of better classification accuracy. In this paper, we evaluate the performance of the tree augmented naive Bayesian in automatically detecting students' learning style in the online learning environment. The experimental results are promising as the tree augmented naive Bayes network is shown to achieve higher detection accuracy when compared to the Bayesian network.

Keywords

Automatic detection, Bayesian network, Learning styles

Divisions

ai

Publication Title

Royal Society Open Science

Volume

5

Issue

7

Publisher

The Royal Society

This document is currently not available here.

Share

COinS