Fabrication of PFO-DBT:OXCBA nanostructured composite via hard template
Document Type
Article
Publication Date
1-1-2016
Abstract
Poly[2,7-(9,9-dioctylfluorene)-alt−4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) and o-xylenyl-C60-bisadduct (OXCBA) nanostructured composite has been fabricated via the hard porous alumina template-directed method. Spin-coating technique at the spin rate of 1000 rpm is used to assist the infiltration of polymer solution into porous template. PFO-DBT nanotube is fabricated by replicating the porous alumina template before the formation of PFO-DBT:OXCBA nanostructured composite. Formation of nanostructured composite is completed once the infiltration of OXCBA solution into PFO-DBT nanotubes is achieved. Detailed results of morphological, structural, and optical properties of PFO-DBT nanostructures (nanorods and nanotubes) of different solution concentrations are reported. By tuning the optical properties of PFO-DBT nanostructures, the effect of solution concentration on the optical properties can be realized. The promising PFO-DBT nanotubes are chosen for the further fabrication of OXCBA:PFO-DBT nanostructured composite that acts as a core and shell, respectively. Although the nanostructured composite of PFO-DBT:OXCBA yield low light absorption intensity, the absorption spans the whole visible region and produce low optical energy gap.
Keywords
Composites, Conducting polymers, Morphology, Nanostructured polymers, Optical properties
Divisions
PHYSICS
Funders
University of Malaya Research Grant (RP026C-15AFR), Postgraduate Research Grant (PG058-2014A),Ministry of Education Malaysia: Fundamental Research Grant Scheme (FP046-2015A)
Publication Title
Journal of Applied Polymer Science
Volume
133
Issue
47
Publisher
Wiley