Fabrication of PFO-DBT:OXCBA nanostructured composite via hard template

Document Type

Article

Publication Date

1-1-2016

Abstract

Poly[2,7-(9,9-dioctylfluorene)-alt−4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) and o-xylenyl-C60-bisadduct (OXCBA) nanostructured composite has been fabricated via the hard porous alumina template-directed method. Spin-coating technique at the spin rate of 1000 rpm is used to assist the infiltration of polymer solution into porous template. PFO-DBT nanotube is fabricated by replicating the porous alumina template before the formation of PFO-DBT:OXCBA nanostructured composite. Formation of nanostructured composite is completed once the infiltration of OXCBA solution into PFO-DBT nanotubes is achieved. Detailed results of morphological, structural, and optical properties of PFO-DBT nanostructures (nanorods and nanotubes) of different solution concentrations are reported. By tuning the optical properties of PFO-DBT nanostructures, the effect of solution concentration on the optical properties can be realized. The promising PFO-DBT nanotubes are chosen for the further fabrication of OXCBA:PFO-DBT nanostructured composite that acts as a core and shell, respectively. Although the nanostructured composite of PFO-DBT:OXCBA yield low light absorption intensity, the absorption spans the whole visible region and produce low optical energy gap.

Keywords

Composites, Conducting polymers, Morphology, Nanostructured polymers, Optical properties

Divisions

PHYSICS

Funders

University of Malaya Research Grant (RP026C-15AFR), Postgraduate Research Grant (PG058-2014A),Ministry of Education Malaysia: Fundamental Research Grant Scheme (FP046-2015A)

Publication Title

Journal of Applied Polymer Science

Volume

133

Issue

47

Publisher

Wiley

This document is currently not available here.

Share

COinS