Effect of Titanium Dioxide on Adhesion and Conductivity Behavior of Polyaniline/Alkyd Composite for Solar Cell Application

Document Type

Article

Publication Date

1-1-2018

Abstract

This study attempts to improve the adhesion and conductivity of polyaniline (PAni) by incorporating an alkyd and titanium dioxide (TiO 2 ), respectively. PAni with different TiO 2 content (10, 20, and 40%) are synthesized through chemical oxidation method by using aniline (Ani) monomer, dioctyl sodium sulfosuccinate (AOT) dopant, and ammonium persulphate (APS) oxidant at 0 °C for 24 h. In order to improve the adhesion of PAni-TiO 2 on fluoride doped-tin oxide (FTO) glass prior to its application as counter electrode (CE) in Dye-Sensitized Solar Cell (DSSC), a palm oil-based alkyd is added into PAni-TiO 2 composite. Chemical structures of PAni-TiO 2 /Alkyd are confirmed by Fourier transform infrared spectrophotometer (FTIR) and ultraviolet-visible (UV-Vis) spectrophotometry analyses. Conductivity measurement is determined by using four point probe method and adhesion test is performed following ASTM D3599. Results showed that conductivity of PAni had significantly improved from 3.53 × 10 −3 (without TiO 2 ) to 8.16 × 10 −3 –6.59 × 10 −2 S cm −1 (with TiO 2 ). However, the conductivity of all PAni-TiO 2 /Alkyd samples on FTO glass showed high conductivity (6.11–6.32 × 10 2 S cm −1 ) and better adhesion behavior on FTO glass except for the sample with 40% of TiO 2 . The plausible mechanisms between PAni-TiO 2 /Alkyd and FTO glass are proposed in this study based on the FTIR and UV-Vis analyses.

Keywords

adhesion, conductivity, dye-sensitized solar cell, palm oil-based alkyd, polyaniline, titanium dioxide

Divisions

CHEMISTRY

Funders

Tunku Abdul Rahman University College (TAR UC internal grant, 86003),Malaysian Palm Oil Board

Publication Title

Macromolecular Symposia

Volume

382

Issue

1

Publisher

Wiley-VCH Verlag

This document is currently not available here.

Share

COinS