Design, synthesis and biological evaluation of organotin(IV) complexes of flumequine and cetirizine

Document Type

Article

Publication Date

1-1-2018

Abstract

Six new organotin(IV) derivatives [Me3SnL1] (1), [Bu3SnL1] (2), [Ph3SnL1] (3), [Me3SnL2] (4), [Bu3SnL2] (5) and [Ph3SnL2] (6) (where HL1 = = 9-fluoro-6,7-dihydro-5-methyl-1-oxo-1H,5H-pyrido[3,2,1-ij]quinoline-2-car-boxylic acid (flumequine) and HL2 = 2-[2-[4-[(4-chlorophenyl)phenylmethyl]--1-piperazinyl]ethoxy] acetic acid (cetirizine)) were synthesized and characterized by elemental analysis, FT-IR spectroscopy, multinuclear 1H-, 13C- and 119Sn-NMR, mass spectrometry and thermal analysis techniques. The obtained data reveal trigonal-bipyramidal geometry in case of complexes 1, 2, 4 and 5, and tetrahedral geometry for complexes 3 and 6 around the tin atom, whereas in complexes 3 and 6 the carboxylate ligand act as monodentate ligand through one of its oxygen atoms while it acts as bidentate ligand through two oxygen atoms for complexes 1, 2, 4 and 5. The antibacterial and antifungal efficacies of complexes 1–6 were assessed and the majority of the compounds showed good activities. The present research showed that the trimethyltin(IV) derivatives were particularly more effective than tributyltin(IV) and triphenyltin(IV) derivatives against all the bacterial and fungal strains. Antioxidant and DNA binding studies were also performed and promising results were obtained.

Keywords

organotin(IV) complexes, spectroscopy, antioxidant, antimicrobial, DNA binding

Divisions

CHEMISTRY

Funders

Higher Education Commission of Pakistan: Indigenous 5000 scholarship batch-5 (Pin No. 085-10718-Ps5-236),IRSIP Foreign scholarship

Publication Title

Journal of the Serbian Chemical Society

Volume

83

Issue

4

Publisher

Serbian Chemical Society

This document is currently not available here.

Share

COinS