Detection of energy theft and defective smart meters in smart grids using linear regression
Document Type
Article
Publication Date
1-1-2017
Abstract
The utility providers are estimated to lose billions of dollars annually due to energy theft. Although the implementation of smart grids offers technical and social advantages, the smart meters deployed in smart grids are susceptible to more attacks and network intrusions by energy thieves as compared to conventional mechanical meters. To mitigate non-technical losses due to electricity thefts and inaccurate smart meters readings, utility providers are leveraging on the energy consumption data collected from the advanced metering infrastructure implemented in smart grids to identify possible defective smart meters and abnormal consumers’ consumption patterns. In this paper, we design two linear regression-based algorithms to study consumers’ energy utilization behavior and evaluate their anomaly coefficients so as to combat energy theft caused by meter tampering and detect defective smart meters. Categorical variables and detection coefficients are also introduced in the model to identify the periods and locations of energy frauds as well as faulty smart meters. Simulations are conducted and the results show that the proposed algorithms can successfully detect all the fraudulent consumers and discover faulty smart meters in a neighborhood area network.
Keywords
Energy theft detection, Defective meter detection, Smart Grid, Linear regression, Categorical variable
Divisions
fac_eng
Funders
High Impact Research Grant (D000022-16001)
Publication Title
International Journal of Electrical Power & Energy Systems
Volume
91
Publisher
Elsevier