Document Type
Article
Publication Date
8-1-2015
Abstract
Recent advancements in computational design and additive manufacturing have enabled the fabrication of 3D prototypes with controlled architecture resembling the natural bone. Powder-based three-dimensional printing (3DP) is a versatile method for production of synthetic scaffolds using sequential layering process. The quality of 3D printed products by this method is controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The X-direction printed scaffolds with a pore size of 0.8 mm and a layer thickness of 0.1125 mm were subjected to the depowdering step. The effects of four layer printing delays of 50, 100, 300 and 500 ms on the physical and mechanical properties of printed scaffolds were investigated. The compressive strength, toughness and tangent modulus of samples printed with a delay of 300 ms were observed to be higher than other samples. Furthermore, the results of SEM and mu CT analyses showed that samples printed with a delay of 300 ms have higher dimensional accuracy and are significantly closer to CAD software based designs with predefined 0.8 mm macro-pore and 0.6 mm strut size. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords
Additive manufacturing, 3d printing, dimensional accuracy, compressive strength, delay in printing, hydroxyapatite scaffolds, elastic properties, printability, substitutes, parameters, titanium, plaster, powders, design, system
Divisions
fac_eng
Funders
High Impact Research UM/MOHE/HIR D000010-16001
Publication Title
Ceramics International
Volume
41
Issue
7
Publisher
Elsevier
Additional Information
ISI Document Delivery No.: CJ7WS Times Cited: 0 Cited Reference Count: 48 Cited References: Bergmann C, 2010, J EUR CERAM SOC, V30, P2563, DOI 10.1016/j.jeurceramsoc.2010.04.037 Berman B, 2012, BUS HORIZONS, V55, P155, DOI 10.1016/j.bushor.2011.11.003 Bignon A, 2003, J MATER SCI-MATER M, V14, P1089, DOI 10.1023/B:JMSM.0000004006.90399.b4 Billiet T, 2012, BIOMATERIALS, V33, P6020, DOI 10.1016/j.biomaterials.2012.04.050 Butscher A, 2013, ACTA BIOMATER, V9, P5369, DOI 10.1016/j.actbio.2012.10.009 Butscher A, 2012, ACTA BIOMATER, V8, P373, DOI 10.1016/j.actbio.2011.08.027 Butscher A, 2013, ACTA BIOMATER, V9, P9149, DOI 10.1016/j.actbio.2013.07.019 Castilho M, 2013, BIOFABRICATION, V5, DOI 10.1088/1758-5082/5/3/035012 Castilho M, 2014, BIOFABRICATION, V6, DOI 10.1088/1758-5082/6/1/015006 Castilho M, 2011, INT J ADV MANUF TECH, V56, P561, DOI 10.1007/s00170-011-3219-4 Castilho M, 2014, BIOFABRICATION, V6, DOI 10.1088/1758-5082/6/2/025005 Chumnanklang R, 2007, MAT SCI ENG C-BIO S, V27, P914, DOI 10.1016/j.msec.2006.11.004 Eve S, 2002, J EUR CERAM SOC, V22, P2269, DOI 10.1016/S0955-2219(02)00014-6 Farzadi A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108252 Galeta T, 2008, STROJ VESTN-J MECH E, V54, P725 Gupta RD, 2003, COMPUT STAT DATA AN, V43, P179 Huang Q., 2015, IIE T Kabel J, 1999, BONE, V24, P115, DOI 10.1016/S8756-3282(98)00164-1 Khalyfa A, 2007, J MATER SCI-MATER M, V18, P909, DOI 10.1007/s10856-006-0073-2 Kumar S, 2010, MATER DESIGN, V31, P850, DOI 10.1016/j.matdes.2009.07.045 Lee EJ, 2007, MATER LETT, V61, P2270, DOI 10.1016/j.matlet.2006.08.065 Leukers B, 2005, J MATER SCI-MATER M, V16, P1121, DOI 10.1007/s10856-005-4716-5 Li HL, 2004, MATER TRANS, V45, P1124, DOI 10.2320/matertrans.45.1124 Liu C, 2007, CHEM ENG RES DES, V85, P1051, DOI 10.1205/cherd06196, 10.1205/cherd061915 Liu W., 2013, J NANOMATER, V2013, P1 Maleksaeedi S, 2014, J MATER PROCESS TECH, V214, P1301, DOI 10.1016/j.jmatprotec.2014.01.019 Monmaturapoj N, 2011, B MATER SCI, V34, P1733, DOI 10.1007/s12034-011-0384-x Olszewski R., 2014, J CRANIO MAXILLOFAC Peltola SM, 2008, ANN MED, V40, P268, DOI 10.1080/07853890701881788 Ramay HRR, 2004, BIOMATERIALS, V25, P5171, DOI 10.1016/j.biomaterials.2003.12.023 Ryan GE, 2008, BIOMATERIALS, V29, P3625, DOI 10.1016/j.biomaterials.2008.05.032 Scalera F, 2013, CERAM INT, V39, P4839, DOI 10.1016/j.ceramint.2012.11.076 Shanjani Y, 2011, ACTA BIOMATER, V7, P1788, DOI 10.1016/j.actbio.2010.12.017 Stickland MT, 2003, MECHATRONICS, V13, P521, DOI 10.1016/S0957-4158(01)00052-6 Suwanprateeb J, 2010, J MATER SCI-MATER M, V21, P419, DOI 10.1007/s10856-009-3883-1 Suwanprateeb J, 2012, RAPID PROTOTYPING J, V18, P490, DOI 10.1108/13552541211272036 Swain SK, 2011, MAT SCI ENG C-MATER, V31, P1240, DOI 10.1016/j.msec.2010.11.014 Toda H, 2013, MATER TRANS, V54, P2195, DOI 10.2320/matertrans.L-M2013832 Vaezi M, 2011, INT J ADV MANUF TECH, V53, P275, DOI 10.1007/s00170-010-2821-1 Wang WL, 1996, MATER DESIGN, V17, P205, DOI 10.1016/S0261-3069(97)00008-3 Watson RA, 2014, J SURG EDUC, V71, P14, DOI 10.1016/j.jsurg.2013.10.012 Wieding J, 2014, J MECH BEHAV BIOMED, V37, P56, DOI 10.1016/j.jmbbm.2014.05.002 Will J, 2013, CHARACTERIZATION OF BIOMATERIALS, P299, DOI 10.1016/B978-0-12-415800-9.00008-5 Wu CT, 2012, J MATER CHEM, V22, P12288, DOI 10.1039/c2jm30566f Yan X, 1996, COMPUT AIDED DESIGN, V28, P307, DOI 10.1016/0010-4485(95)00035-6 Yang SF, 2008, MATER DESIGN, V29, P1802, DOI 10.1016/j.matdes.2008.03.024 Zhou Z., 2012, ISRN BIOMATER, V2013, P1 Zhou ZX, 2014, MAT SCI ENG C-MATER, V38, P1, DOI 10.1016/j.msec.2014.01.027 Farzadi, Arghavan Waran, Vicknes Solati-Hashjin, Mehran Rahman, Zainal Ariff Abdul Asadi, Mitra Abu Osman, Noor Azuan Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 High Impact Research UM/MOHE/HIR D000010-16001 This study was supported by High Impact Research UM/MOHE/HIR Project no. D000010-16001. Also, the authors thank all members of Center for Biomedical Technology Integration (CBMTI) for their valuable time and technical assistance. 0 ELSEVIER SCI LTD OXFORD CERAM INT