Document Type
Article
Publication Date
4-1-2015
Abstract
The effects of the external optical cavity parameters (external optical cavity length (L-ext), amplitude coupling (C-o) and anti-reflection coating (ARC) reflectivity coefficients) on the noise and modulation spectra of a fiber grating Fabry-Perot laser are numerically analyzed for designing a laser that operates in strong feedback regime (Regime V). Fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external optical feedback (OFB) level. The study is performed by modifying a set of rate equations that are solved by considering the effects of external OFB and ambient temperature (T) variations. We proposed a model to calculate the temperature dependence (TD) of laser characteristics according to the TD of laser parameters. An accurate analytical expression for the TD of threshold carrier density (N-th,N- fe) has been derived. The TD of N-th,N- fe was calculated according to the TD of laser cavity parameters instead of using well-known empirical Pankove relationship via the use of characteristics temperature (T-o) and current (I-o). Results show that the optimum external fiber length (L-ext) is 3.1 cm. Also, it is shown that ARC with reflectivity value of 1 x 10(-2) is sufficient for the laser to operate at low noise, good modulation response, and low fabrication complexity.
Keywords
External cavity semiconductor lasers, external optical feedback, fiber bragg grating, wdm access network, semiconductor-laser, output characteristics, single-mode, dfb laser, feedback, modulation, noise, linewidth, module
Divisions
fac_eng
Funders
MOSTI Science Fund SF001-2013
Publication Title
Optical Review
Volume
22
Issue
2
Publisher
OPTICAL SOC JAPAN, KUDAN-KITA BLDG 5F, 1-12-3, KUDAN-KITA CHIYODA-KU, TOKYO, 102, JAPAN
Additional Information
ISI Document Delivery No.: CG9JJ Times Cited: 0 Cited Reference Count: 49 Cited References: Ab-Rahman MS, 2011, OPTIK, V122, P266, DOI 10.1016/j.ijleo.2010.01.002 Agrawal G. P., 1993, SEMICONDUCTOR LASERS, V2nd, P112 AHMED Z, 1995, IEEE J SEL TOP QUANT, V1, P505, DOI 10.1109/2944.401235 Cai Haiwen �海�, 2003, Chinese Optics Letters, V1, P12 Campbell RJ, 1996, ELECTRON LETT, V32, P119, DOI 10.1049/el:19960075 Cardoza-Avendano L, 2011, OPT LASER TECHNOL, V43, P949, DOI 10.1016/j.optlastec.2010.12.009 Dogru N, 2003, OPT LASER TECHNOL, V35, P163, DOI 10.1016/S0030-3992(02)00166-4 Genty G, 2000, IEEE J QUANTUM ELECT, V36, P1193, DOI 10.1109/3.880660 Gnauck AH, 2008, J LIGHTWAVE TECHNOL, V26, P79, DOI 10.1109/JLT.2007.912110 Han JM, 2007, OPT LASER TECHNOL, V39, P313, DOI 10.1016/j.optlastec.2005.07.011 Hashimoto JI, 2003, J LIGHTWAVE TECHNOL, V21, P2002, DOI 10.1109/JLT.2003.815498 Hashimoto JI, 2002, IEEE PHOTONIC TECH L, V14, P1617, DOI 10.1109/LPT.2002.803874 Hisham H. K., 2012, IEEE PHOTONICS J, V2353 Hisham H. K., 2012, IEEE J QUANTUM ELECT, V48, P385 Hisham HK, 2012, OPT REV, V19, P64, DOI 10.1007/s10043-012-0014-x Hisham HK, 2012, OPT LASER TECHNOL, V44, P1698, DOI 10.1016/j.optlastec.2012.01.027 Hisham HK, 2013, OPTIK, V124, P1763, DOI 10.1016/j.ijleo.2012.05.004 Hisham HK, 2012, IEEE PHOTONICS J, V4, P1662, DOI 10.1109/JPHOT.2012.2214207 Hisham HK, 2012, J MOD OPTIC, V59, P393, DOI 10.1080/09500340.2011.629060 IKEDA K, 1986, J STAT PHYS, V44, P955, DOI 10.1007/BF01011917 Jia XH, 2007, OPT COMMUN, V279, P356, DOI 10.1016/j.optcom.2007.07.044 Kallimani K., 1998, IEE P-OPTOELECTRON, P319 Kuwashima F, 2001, JPN J APPL PHYS 1, V40, P601, DOI 10.1143/JJAP.40.601 Lee JH, 2009, OPT FIBER TECHNOL, V15, P310, DOI 10.1016/j.yofte.2009.01.001 Lin B, 2011, OPT FIBER TECHNOL, V17, P120, DOI 10.1016/j.yofte.2011.01.002 Liu M. M. K., 1996, PRINCIPLE APPL OPTIC, V1st, P213 Loh W, 2011, IEEE PHOTONIC TECH L, V23, P974, DOI 10.1109/LPT.2011.2146245 Morgado JAP, 2003, IEEE J SEL TOP QUANT, V9, P1315, DOI 10.1109/JSTQE.2003.819513 Naumenko A, 2003, IEEE J QUANTUM ELECT, V39, P1216, DOI 10.1109/JQE.2003.817669 Ohtsubo J., 2008, SEMICONDUCTOR LASERS, V2nd, P65 Othonos A., 1999, FIBER BRAGG GRATING, V2nd, P65 Park KY, 2008, IEEE J QUANTUM ELECT, V44, P995, DOI 10.1109/JQE.2008.2000913 Pittoni F, 2001, IEEE J SEL TOP QUANT, V7, P280, DOI 10.1109/2944.954140 Premaratne M, 1997, IEEE J SEL TOP QUANT, V3, P290, DOI 10.1109/2944.605670 Sato T, 2002, IEEE PHOTONIC TECH L, V14, P1001, DOI 10.1109/LPT.2002.1012412 Shih FY, 2010, OPT FIBER TECHNOL, V16, P46, DOI 10.1016/j.yofte.2009.10.001 Silver M, 2002, IEEE PHOTONIC TECH L, V14, P741, DOI 10.1109/LPT.2002.1003078 Tang JG, 2010, OPT FIBER TECHNOL, V16, P299, DOI 10.1016/j.yofte.2010.06.004 Timofeev F. N., 1997, P ECOC, V1 Timofeev FN, 2000, FIBER INTEGRATED OPT, V19, P327 Timofeev FN, 1997, ELECTRON LETT, V33, P1406, DOI 10.1049/el:19970921 Wu YZ, 2011, OPT COMMUN, V284, P1139, DOI 10.1016/j.optcom.2010.10.052 Wu ZM, 2009, OPTIK, V120, P136, DOI 10.1016/j.ijleo.2007.08.001 Xu QY, 2011, MICROW OPT TECHN LET, V53, P1615, DOI 10.1002/mop.26083 Yan LS, 2010, IEEE PHOTONIC TECH L, V22, P1391, DOI 10.1109/LPT.2010.2060478 Yeh C. H., 2010, OPTICAL FIBER TECHNO, V271, P271 Yu HG, 2005, IEEE J QUANTUM ELECT, V41, P1492, DOI 10.1109/JQE.2005.857706 Zhang Y, 2001, OPTIK, V112, P91, DOI 10.1078/0030-4026-00016 Zhou H, 2005, OPTO-ELECTRON REV, V13, P27 Hisham, Hisham Kadhum Abas, Ahmad Fauzi Mahdiraji, Ghafour Amouzad Mahdi, Mohd Adzir Adikan, Faisal Rafiq Mahamd Engineering, Faculty /I-7935-2015 Engineering, Faculty /0000-0002-4848-7052 MOSTI Science Fund SF001-2013 This work is partially supported by the MOSTI Science Fund grant number SF001-2013. 0 OPTICAL SOC JAPAN TOKYO OPT REV