Document Type
Article
Publication Date
1-1-2015
Abstract
Recurrent neural network (RNN) has been widely used as a tool in the data classification. This network can be educated with gradient descent back propagation. However, traditional training algorithms have some drawbacks such as slow speed of convergence being not definite to find the global minimum of the error function since gradient descent may get stuck in local minima. As a solution, nature inspired metaheuristic algorithms provide derivative-free solution to optimize complex problems. This paper proposes a new metaheuristic search algorithm called Cuckoo Search (CS) based on Cuckoo bird’s behavior to train Elman recurrent network (ERN) and back propagation Elman recurrent network (BPERN) in achieving fast convergence rate and to avoid local minima problem. The proposed CSERN and CSBPERN algorithms are compared with artificial bee colony using BP algorithm and other hybrid variants algorithms. Specifically, some selected benchmark classification problems are used. The simulation results show that the computational efficiency of ERN and BPERN training process is highly enhanced when coupled with the proposed hybrid method.
Keywords
Weight Optimization, Neural Networks, Hybrid Metaheuristic Cuckoo Search Techniques, Data Classification
Divisions
fsktm
Funders
Fundamental Research Grant Scheme (FRGS) Vote no. 1236 from MoHE Malaysia,Program Rakan Penyelidikan University of Malaya (PRPUM) Grant Vote no. CG063-2013
Publication Title
Mathematical Problems in Engineering
Volume
2015
Publisher
Hindawi Publishing Corporation