Document Type
Article
Publication Date
1-1-2015
Abstract
The motion and interaction of a bubble pair in a non-Newtonian fluid (xanthan gum solution) were numerically simulated using a volume of fluid (VOF) method, in which the continuous surface tension model and the power-law model were adopted to represent the surface tension and rheological properties of non-Newtonian fluids, respectively. The effects of the initial horizontal bubble interval, oblique alignment and rheological properties of non-Newtonian fluids on a pair of bubbles rising side-by-side are evaluated in this study. The results indicate that for the case with a non-dimensional initial horizontal bubble interval h* = 4.0, the interaction between the bubbles shows a minimal repulsive effect. Moreover, for the oblique angle alignment a greater repulsive force between the bubbles was seen when the angle was reduced. However, oblique coalescence occurred due to the higher attraction between the bubbles at higher angles, which is independent of the flow index. It is also found that the repulsion effect as well as the variation of the bubble shape from spherical to irregular are more significant at a lower flow index (n < 0.5) due to the shear-thinning effect as well as the differences in their flow field structures.
Divisions
fac_eng
Funders
University of Malaya, Ministry of Higher Education High Impact Research UM.C/HIR/MOHE/ENG/20 ,University of Malaya Research Grant UMRG: RG121/11AET
Publication Title
RSC Advances
Volume
5
Issue
11
Publisher
Royal Society of Chemistry
Additional Information
Times Cited: 0 0