Studies of solvent effect on the conductivity of 2-mercaptopyridine-doped solid polymer blend electrolytes and its application in dye-sensitized solar cells

Document Type

Article

Publication Date

1-1-2015

Abstract

Solvents and electrolytes play an important role in the fabrication of dye-sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)-poly(methyl methacrylate)-KI-I2 (PEO-PMMA-KI-I2) polymer blend electrolytes prepared with different wt % of the 2-mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X-ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO-PMMA-KI-I2 and 2-mercaptopyrindine. Ionic conductivity data revealed that 30% 2-mercaptopyridine-doped PEO-PMMA-KI-I2 electrolyte can show higher conductivity (1.55 × 10-5 S cm-1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2-mercaptopyridine-doped PEO-PMMA-KI-I2) electrolyte using various organic solvents such as acetonitrile, N,N-dimethylformamide, 2-butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac-conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N-dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo-conversion efficiency of dye-sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm-2. The study suggests that N,N-dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac-conductivity beneficial for the electrochemical device applications.

Keywords

Applications, Blends, Conducting polymers, Plasticizer, Polymer electrolytes

Divisions

PHYSICS

Publication Title

Journal of Applied Polymer Science

Volume

132

Issue

35

Publisher

Wiley

This document is currently not available here.

Share

COinS