Dynamic heart rate estimation using principal component analysis

Document Type

Article

Publication Date

1-1-2015

Abstract

In this paper, facial images from various video sequences are used to obtain a heart rate reading. In this study, a video camera is used to capture the facial images of eight subjects whose heart rates vary dynamically, between 81 and 153 BPM. Principal component analysis (PCA) is used to recover the blood volume pulses (BVP) which can be used for the heart rate estimation. An important consideration for accuracy of the dynamic heart rate estimation is to determine the shortest video duration that realizes it. This video duration is chosen when the six principal components (PC) are least correlated amongst them. When this is achieved, the first PC is used to obtain the heart rate. The results obtained from the proposed method are compared to the readings obtained from the Polar heart rate monitor. Experimental results show the proposed method is able to estimate the dynamic heart rate readings using less computational requirements when compared to the existing method. The mean absolute error and the standard deviation of the absolute errors between experimental readings and actual readings are 2.18 BPM and 1.71 BPM respectively.

Keywords

Image analysis, Image processing, Medical and biological imaging

Divisions

fac_eng

Publication Title

Biomedical Optics Express

Volume

6

Issue

11

Publisher

Optical Society of America

This document is currently not available here.

Share

COinS