Numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having a heated circular hollow cylinder
Document Type
Article
Publication Date
1-1-2011
Abstract
Mixed convection heat transfer in a lid-driven cavity along with a heated circular hollow cylinder positioned at the center of the cavity has been analyzed numerically. The present study simulates a realistic system such as air-cooled electronic equipment with a heat component or an oven with heater. A Galerkin weighted residual finite element method with a Newton-Raphson iterative algorithm is adopted to solve the governing equations. The computation is carried out for wide ranges of the Richardson numbers, cylinder diameter and solid fluid thermal conductivity ratio. Results are presented in the form of streamlines, isothermal lines, average Nusselt number at the heated surface and fluid temperature in the cavity for the mentioned parameters. It is found that the flow field and temperature distribution strongly depend on the cylinder diameter and also the solid-fluid thermal conductivity ratio at the three convective regimes.
Keywords
Galerkin method, Hollow cylinder and mixed convection, Lid-driven cavity, Circular hollow cylinders, Cylinder diameters, Fluid temperatures, Galerkin, Governing equations, Heated surfaces, Hollow cylinders, Iterative algorithm, Lid-driven cavities, Newton-Raphson, Realistic systems, Richardson number, Thermal conductivity ratio, Weighted residuals, Algorithms, Amplifiers (electronic), Cylinders (shapes), Finite element method, Fluids, Galerkin methods, Mixed convection, Nusselt number, Oscillators (electronic), Thermal conductivity of liquids, Thermal conductivity of solids, Flow of fluids.
Divisions
fac_eng
Publication Title
International Communications in Heat and Mass Transfer
Volume
38
Issue
8
Publisher
International Communications in Heat and Mass Transfer
Additional Information
830MP Times Cited:3 Cited References Count:21