Enhancement of methane oxidation with effective methanotrophic mixed cultures
Document Type
Article
Publication Date
1-1-2011
Abstract
The emission of CH 4 from landfill is ranked third among the anthropogenic CH 4 sources and ranged between 19-40Tg/yr. The Microbial oxidation of landfill methane plays a significant role in reducing the emissions to the atmosphere. This study was carried out to the investigate the impact of several parameters on methane(CH 4) oxidation, using compost as biocover. Addition of dedicated methanotrophic bacterial cultures was also included.. Experiments with different concentrations of methanotrophic mixed cultures ranging from 2.33× 10 7CFU/g to 11.33× 10 77 CFU/g showed that the highest oxidation rate with addition of 5.33 × 10 7 CFU/g was 4.166 × 10 3ugg -1h -1. Experiments with different incubation temperature showed that highest oxidation rate of 4.166 × 10 3ugg -1h -1 was at 35°C Similar oxidation rates were obtained with the addition of mixed culture at 60% moisture content. The highest bacterial count was obtained at 35°C at 12.33 × 10 7 CFU/g while lowest was at 45°C The moisture at 60% showed the highest bacterial count at 10.66 × 10 7 CFU/g whereas 30% moisture showed the lowest count at 3 × 10 7 CFU/g. From this study we concluded that the addition of methanotrophic mixed culture gave a significant increase in methane oxidation compared to the control at the optimal temperature and moisture content.
Keywords
Biocover, Compost, Methane oxidation rate, Methanotrophic mixed culture
Divisions
InstituteofBiologicalSciences
Publication Title
Malaysian Journal of Science
Volume
30
Issue
1
Publisher
Faculty of Science, University of Malaya
Additional Information
Institute of Biological Sciences, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur, MALAYSIA